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Abstract

In recent years, neural networks have achieved impressive performance on a wide range of
tasks. However, neural networks tend to make overly optimistic predictions about out-of-
distribution data. When managing model risks, it is important to know what we do not
know. Although there have been many successes in detecting out-of-distribution data, it is
unclear how we can extract further information from these uncertain predictions. To address
this problem, we propose to use three types of monotonicity by solving a mean-variance
optimization problem. The fast marching method is proposed as an efficient solution. We
demonstrate, using empirical examples, that it is possible to provide confident bounds for a
large portion of uncertain predictions by monotonicity.

1 Introduction

Deep neural networks (DNNs) have been widely applied in a variety of applications. For high-risk sectors
such as the financial sector, predictive power is not the only factor to consider. It is stressed in the model risk
management handbook 1 provided by the Office of the Comptroller of the Currency c2(OCC) c3c3 that when
machine learning (ML) models are applied, they need to know what they don’t know. It is possible, for
example, for a trading model to perform very well under normal circumstances, but to fail during a financial
crisis. To prevent losing money, traders might switch to other strategies if the trading model alerts them to
significant changes in the trading environment.

However, in practice, the distribution of the population may differ significantly from that of the training set.
For instance, in lending, there is an abundance of data on good applicants, but a very risky applicant with
numerous past dues might be extremely rare and have not been seen by the model before. Out-of-distribution
(OOD) inputs often pose a challenge to the use of DNNs. Unless carefully managed, DNNs may become
overconfident about their predictions, resulting in catastrophic results.
c4There has been considerable attention given to this challenge in recent years, and the results are encour-
aging (Lakshminarayanan et al., 2017; Kardan et al., 2021; Bibas et al., 2021; Liang et al., 2018; Yang et al.,
2022; Geng et al., 2020; Zhou et al., 2022; Ovadia et al., 2019). Based on the successful detection of OOD
data, we ask the following question: What can we learn from what we don’t know?

As with black-box ML models, we may be unable to obtain additional information. On the other hand, recent
developments in domain-knowledge-inspired machine learning models have been highly successful and
could be used to provide additional information. In particular, monotonic machine learning models has

1https://www.occ.treas.gov/publications-and-resources/publications/comptrollers-handbook/files/model-risk-
management/index-model-risk-management.html.

c2 Text added.
c3 Text added.
c3The Office of the Comptroller of the Currency charters, regulates, and supervises all national banks, federal savings

associations, and federal branches and agencies of foreign banks. In general, the Office of the Comptroller of the Currency
provides regulatory guidance to financial institutions. In their handbook, they provide practitioners with a high-level guide
to controlling model risk and validating AI and ML models in financial markets.

c4 This challenge has received considerable attention in recent years and the results have shown promising
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been very popular in many areas (Repetto, 2022; Chen & Ye, 2022; Liu et al., 2020; Chen & Ye, 2023). There
may be additional information to be gained from monotonic models in the case of uncertain predictions. It
has been shown by Chen (2022) that individual monotonicity can provide reliable bounds to uncertain inputs.
Here is an example of a simple illustration c5in credit scoring. Credit scores are based on information in credit
reports to predict credit behavior, including the likelihood of repaying a loan in a timely manner. ML models
can be used to predict the probability of default, which are then converted into credit scores. Predictions
are based on a number of factors, one of which is the number of past-due payments. Let’s suppose that an
applicant has ten c6past-due payments. Although the model may not be certain of this prediction due to its
rarity, it does know that five c7past-due payments has already been very risky, so ten c8past-due payments
cannot be any less risky. Consequently, it should be categorized into risky groups.

There has been significant attention paid to monotonicity in the past (Sill, 1997; Cano et al., 2019; Gupta
et al., 2020), since it is not only about conceptual soundness but also about fairness. In the case of credit
scoring when individual monotonicity is involved, if an applicant has one more c1past-due payment, c2the
model should then predict that the probability of default is increasing based on the conceptual soundness
and fairness outlined in the OCC’s handbook. Otherwise, the model would be unfair since an additional
past-due payment has not been penalized. Thus, monotonicity is usually a hard requirement for related
applications.

While individual monotonicity has been extensively studied (Liu et al., 2020; Milani Fard et al., 2016;
You et al., 2017; Runje & Shankaranarayana, 2023), pairwise monotonicity has been largely ignored.
Recent studies (Gupta et al., 2020; Cotter et al., 2019; Chen & Ye, 2022; 2023) have shown that pairwise
monotonicity is also important. The idea behind pairwise monotonicity is that some features are intrinsically
more important than others. For example, in credit scoring, c3past-due payment information can be divided
into two features based on the number of c4past-due payments within three months or more than three
months. It is then important to consider the feature that counts the number of c5past-due payments of more
than three months as more important for fairness. Alternatively, if the ML model predicts an applicant with
a c6past-due payment within three months is more risky than another with a c7past-due payment of more
than three months, then the prediction is unfair.

It is possible to provide more information for models containing pairwise monotonicity. For example, if an ML
model is sure that an applicant with three c8past-due payments less than three months is already very risky,
then an applicant with three c9past-due payments greater than three months should only be more risky, even
if the model is unsure of the specific predictions it makes. Using this idea, we generalize the mean-variance
optimization problem proposed by Chen (2022). This results in a complex non-convex mixed-integer
nonlinear programming problem. Generally, such a problem is difficult to solve, as discussed in Burer &
Letchford (2012). Existing methods may not be capable of solving this problem efficiently. As an example,
Chen (2022) does not consider the discrete nature of features and non-convexity. By taking advantage of the
monotonic property of models, we propose to use the fast marching method (FMM) to find the global
c10optimizer to the problem. The FMM algorithm (Tsitsiklis, 1995; Sethian, 1996; Helmsen et al., 1996)
was originally proposed for tracing interface evolution by solving partial differential equations and has been
very successful. By utilizing general types of monotonicity, we extend the FMM to solve our optimization
problem. By using empirical examples, we demonstrate that our method has the capability of providing
reliable bounds to unconfident predictions and enhances the prediction of uncertainty.

c5 Text added.
c6 past dues
c7 past dues
c8 past dues
c1 past due
c2 then the model should predict that the probability of default is increasing, otherwise the model would be unfair.
c3 past due
c4 past dues
c5 past dues
c6 past due
c7 past due
c8 past dues
c9 past dues

c10 solution
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In this work, we make three major contributions:

• We generalize the two-stage framework by Chen (2022) with only individual monotonicity to general
types of monotonicity. c1By incorporating pairwise monotonicity, it will be possible to search a
larger search space for optimization, resulting in better global optimizers. c2

• The monotonicity-induced optimization geometry of the domain is studied, providing an intuitive
understanding of the geometry and permitting the implementation of algorithms in practice.

• A fast marching method based on monotonicity is proposed to find the global c3optimizer to the
complex non-convex mixed-integer nonlinear programming optimization. c4Empirical re-
sults indicate that the fast marching method with all monotonicity has improved the accuracy of
the baseline method.

2 Prerequisites

For problem setup, assume we have n samples c5{xi}n
i=1 and m features c6such that xi ∈ Rm, the data-

generating process is

yi = f(xi) + ϵi (1)

for regression problems c7, where xi is a random input, yi is a label, f is the ML model, and ϵi is the random
noise, and

yi|xi = Bernoulli(g−1(f(xi))) (2)

for binary classification problems, where g is the link function (e.g., logistic function). For simplicity, we
assume xj ∈ R+ ∪ {0} c8where xj denotes the jth feature of x. Assumptions of this type are common
in cost-sharing problems (Friedman & Moulin, 1999) and are often reasonable for high-stakes applications.
Then ML methods are applied to approximate f .

2.1 Individual and Pairwise Monotonicity

Monotonicity is crucial for ensuring conceptual soundness and fairness and is therefore often strictly required
in high-stakes applications (Chen & Ye, 2023; Gupta et al., 2020; Liu et al., 2020). Throughout the paper,
without loss of generality, we focus on the c9monotonically increasing functions. Suppose f is individual
monotonic with respect to xα and ¬α is the complement of α, then the input x can be partitioned into
x = (xα,x¬α). The well-known individual monotonicity is then defined as below.
Definition 2.1. We say f is individually monotonic with respect to xα if ∀xα, x

′
α,x¬α,

f(xα,x¬α) ≤ f(x′
α,x¬α), xα ≤ x′

α. (3)

c10Individual monotonicity is a common phenomenon in practice. In credit scoring, for instance, the proba-
bility of default should be individually monotonic with respect to the number of past dues. c11In criminology,

c1 In this way, a larger search space of optimization can be used for the solution, and thus tighter bounds can be provided.
c2 Consequently, pairwise monotonicity improves the results.
c3 solution
c4 Text added.
c5 Text added.
c6 Text added.
c7 Text added.
c8 for all i
c9 monotonic

c10 Text added.
c11 Text added.
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the likelihood of recidivism is individually monotonic with respect to the number of past criminal charges. In
education, the probability of admission should be monotonic in relation to a student’s grade point average.

In practice, certain features are intrinsically more important than others, and pairwise monotonicity
(Gupta et al., 2020; Cotter et al., 2019; Chen & Ye, 2023; 2022) describes these phenomena. Analog to
equation 3, we partition x = (xβ , xγ ,x¬). Without loss of generality, we assume xβ is more important than
xγ . In addition, we require all features with pairwise monotonicity also satisfy individual monotonicity.
There are two types of pairwise monotonicity. We start with the strong pairwise monotonicity.
Definition 2.2. We say f is strongly monotonic with respect to xβ over xγ if ∀xβ , xγ ,∀x¬,∀c ∈ R+

f(xβ , xγ + c,x¬) ≤ f(xβ + c, xγ ,x¬). (4)

As an example, in criminology, for each additional crime, a felony is considered more serious than a misde-
meanor for predicting the probability of recidivism. Next, we introduce the weak pairwise monotonicity.
Definition 2.3. We say f is weakly monotonic with respect to xβ over xγ if ∀xβ , xγ s.t. xβ = xγ ,∀x¬,∀c ∈
R+,

f(xβ , xγ + c,x¬) ≤ f(xβ + c, xγ ,x¬). (5)

When it comes to predicting admission acceptance for STEM majors, math scores on the GRE are more
important than verbal scores. In contrast to strong pairwise monotonicity, such comparisons are not always
valid. If a student already has a good math score but a very poor verbal score, then an additional increase
in verbal scores might increase more chances than math since universities want to ensure the student is
capable of communicating effectively. The condition xβ = xγ ensures that the comparison is made at the
same magnitude since the comparison is not always valid. The result is that, out of 170 points for math and
verbal, a student with math 165 and verbal 150 has a greater chance of admission for STEM majors than a
student with math 150 and verbal 165, but not necessarily a greater chance than a student with math 160
and verbal 155.

2.2 Detect Out-of-Distribution Data

c1 Ovadia et al. (2019) c2presents a large-scale evaluation of different methods for quantifying predictive
uncertainty across a variety of data modalities and architectures. Overall, they found that the ensemble
methods by Lakshminarayanan et al. (2017) c3performed the best across most metrics and were the most
robust to data shifts. Following Lakshminarayanan et al. (2017), models are trained M times with random
initialization and data shuffles in the entire dataset with c4 {f̂(x; θi)}, where {θi}M

i=1 denote the parameters
of each neural network in the ensemble. c5For the prediction, the average of the ensembles is used,

µ̂(x) = 1
M

M∑
i=1

f̂(x; θi). (6)

The variance is used as a proxy for the level of model uncertainty and is calculated by

σ̂2(x) = 1
M − 1

M∑
i=1

(f̂(x; θi) − µ̂(x))2. (7)

For a data point x, when the variance is large, say σ̂2(x) > ϵ for a threshold ϵ, it is considered too risky to
make the prediction. Accordingly, the dataset is divided into confident and unconfident sets.

c1 Lakshminarayanan et al. (2017) describes a simple yet effective approach to detecting OOD data and has shown to be the
best performer by Ovadia et al. (2019). Ensemble methods are used.

c2 Text added.
c3 Text added.
c4 {f̂i(x; θi)}
c5 Models are then used as predictions based on their average,
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3 Two-stage Method

We generalize the two-stage framework presented by Chen (2022) for general monotonicity. As a first step,
using ensemble methods, we identify the unconfident set for OOD data. In the second stage, we solve a
mean-variance optimization problem to provide bounds for the points in the unconfident set. Using general
monotonicity, the search domain can be enlarged. c6This leads to a better optimizer, however, the problem
becomes more complex with a larger domain, and more importantly, the geometry becomes more complex,
possibly non-convex. Lastly, if bounds do not meet expectations, we leave them to human judgment.

3.1 Detect Out-of-Distribution Data

To detect the unconfident set, we wish to utilize the ensemble method. We demonstrate in the following
Theorem that monotonicity is preserved by ensembles. c1In this regard, we can choose to use the ensemble
µ̂(x) as the prediction.

Proposition 3.1. If c2f̂(x; θi) achieves all monotonicity for all i, then µ̂ preserves all monotonicity.

The proof is left in Appendix A. We then apply the ensemble method and consider

S = {x|σ̂2(x) ≥ ϵ} (8)

as the unconfident set. Similarly, we define Q = {x|σ̂2(x) < ϵ} as the confident set. c3A vertical bar | used
in the set-builder notation throughout the manuscript denotes its meaning as "such that". In this example,
S is the set of all samples x such that σ̂2(x) ≥ ϵ.

3.2 Mean-Variance Optimization

c4Predictions with low confidence are generally be excluded from decision making (Ovadia et al., 2019; OCC,
2021). We wish to provide more information about the unconfident predictions once the unconfident set has
been determined. c5 For an unconfident prediction x ∈ S such that σ̂2(x) ≥ ϵ, it would be helpful to provide
confident bounds in order to provide more information. Specifically, we wish to find x′ and x′′ such that

µ̂(x) ∈ [µ̂(x′), µ̂(x′′)], with σ̂2(x′) < ϵ, σ̂2(x′′) < ϵ. (9)

c6 However, since we are unconfident about the prediction µ̂(x), we cannot directly compare µ̂(x) with µ̂(x′)
and µ̂(x′′) for general models. For models that have been assumed to have monotonicity from domain knowl-
edge, it is possible to draw comparisons directly from the monotonicity assumption. For example, in credit
scoring, the probability of default should be monotonically increasing with respect to the number of past-due
payments to penalize late payments. Thus, we know that an applicant with four past-due payments will have
a greater default probability than an applicant with three past-due payments, assuming all other conditions
are equal. Similarly, in criminology, the probability of recidivism should be monotonically increasing with
respect to the number of past criminal changes; in college admission, a higher GPA should result in a higher
chance of acceptance. This motivates us to define the following space so that monotonicity can be used to
compare the values of function directly.
Definition 3.2. We define the space Ω(x) as

Ω(x) = {x′|f(x′) ≤
M
f(x)}. (10)

c6 resulting in tighter bounds, but also complicating the problem.
c1 Text added.
c2 f̂i
c3 Text added.
c4 Text added.
c5 Text added.
c6 Text added.
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whereas ≤
M

denotes the inequality by monotonicity. That is, we know f(x′) ≤ f(x) by the c7assumed

monotonicity from the Definition 2.1, 2.2, 2.3 c8. c9Similarly, ≥
M

can be defined.

Example 3.3. c1 Here is a demonstration example from the credit scoring. Assume f is the probability of
default and x1, x2 is the number of past-due payments greater than three months and less than three months.
To ensure fairness, we require that f increase monotonically both with respect to x1 and x2 since past due
behaviors should be penalized. Furthermore, we require that f is monotonic over x1 over x2, since a past-due
payment that exceeds three months should receive stronger punishment. As a result, f must satisfy those
monotonicity conditions. In accordance with OCC’s guidelines, such monotonicity is essential for finance
applications to meet conceptual soundness and fairness requirements.

For simplicity, let’s focus only on the domain 0 ≤ x1, x2 ≤ 3. Suppose now we have trained several neural
networks with mean µ̂ and variance σ̂2. Assume that we are interested in x = (2, 0) with σ̂2(x) ≥ ϵ, therefore
µ̂(x) could be unreliable. We know that f(0, 0), f(1, 0) ≤ f(2, 0) based on the individual monotonicity; we
further know f(0, 2), f(1, 1), f(0, 1) ≤ f(2, 0) based on combining individual and pairwise monotonicity. This
gives us Ω(x) = {(0, 0), (1, 0), (0, 2), (1, 1), (0, 1)} such that f(x′) ≤

M
f(x) for x′ ∈ Ω(x). Although we don’t

know exactly what f exactly is, we can determine Ω(x) solely based on monotonicity. We emphasize the use
of ≤

M
on f rather than the outputs from the function µ̂. For example, µ̂ may yield that µ̂(1, 2) ≤ µ̂(2, 0).

However, we may find that this inequality is not reliable if we are uncertain about the µ̂(2, 0).

c2

c3We wish to provide confident bounds [µ̂(x′), µ̂(x′′)] as tight as possible to provide more information. With-
out loss of generality, we focus on finding the lower bound µ̂(x′), but finding the upper bound
µ̂(x′′) is similar. Specifically, we wish to maximize µ̂(x′) with σ̂2(x′) < ϵ, similar to the problems in the
modern portfolio theory by Markowitz (1952). c4 In summary, for each x ∈ S, we wish to solve the following
optimization problem 

maxx′∈Ω(x) µ̂(x′),
subject to σ̂2(x′) < ϵ,

Ω(x) = {x′|f(x′) ≤
M
f(x)}.

(11)

Example 3.4. c5 Following Example 3.3. c6Now suppose we have trained neural networks with mean pre-
diction µ̂(x) and variance σ̂2(x) in Table 1. c7 We consider the threshold ϵ = 10−3. Among all x′ ∈ Ω(x),
we find for x′ = (1, 1), µ̂(x′) = 0.4 is the largest with the satisfied confidence criteria. Therefore, it serves as
a confident lower bound for µ̂(x).
c8 In a similar manner, we could find x′′ such that f(x) ≤

M
f(x′′) with and σ̂2(x′′) < ϵ. Then µ̂(x′′) serves

as a confident upper bound for µ̂(x). Overall, we are confident that µ̂(x) ∈ [µ̂(x′), µ̂(x′′)] = [0.4, 0.8].

c7 monotonicity from domain knowledge
c8 (not from the function outputs)
c9 Text added.
c1 Text added.
c2 Without loss of generality, we focus on finding lower bounds, but finding upper bounds is similar. Suppose

we are unconfident about a prediction at x ∈ S, we wish to find a confident prediction at x′ with f(x′) ≤ f(x) known by
monotonicity. Then we have a confident lower bound for µ̂(x).

c3 Text added.
c4 Therefore, we wish to maximize µ̂(x′) and minimize σ̂2(x′). However, we cannot perform both optimizations simultane-

ously, similar to the problems in modern portfolio theory by Markowitz (1952). Hence, we consider only confident prediction
with σ̂2(x′) < ϵ and look for the largest lower bound µ̂(x′). For optimization, we should focus on the domain that can be
determined by monotonicity, and the following definition is provided.

c5 Text added.
c6 Text added.
c7 Text added.
c8 Text added.
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Table 1: c11An example of mean-variance optimization of equation 11. c12The threshold is ϵ = 10−3. We are
interested in the prediction of x = (2, 0), which is marked bold. By monotonicity, we marked points with
f(x′) ≤

M
f(x) as red and f(x′′) ≥

M
f(x) as blue. The confident bounds are given by [0.4, 0.8].

(0,0) (0,1) (1,0) (0,2) (1,1) (2,0) (0,3) (1,2) (2,1) (3,0)

µ̂ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
σ̂2 10−5 10−5 10−5 10−5 10−5 10−2 10−5 10−5 10−5 10−5

Figure 1: Two-stage framework

Although we can obtain the maximum value of µ̂, it may not be useful if µ̂ is too small. In practice, we would
focus only on µ̂ ≥ τ , for some τ determined by users based on their risk appetites. We may be unable to find
satisfactory lower bounds, in which case we leave the decision to human judgment. This may be the case, for
example, if we have outliers for nonmonotonic features for which we lack domain expertise. Furthermore, if
the variance of all points in the domain is high, there may be no solution. These data points are considered
to be part of the undecided set V such that

V(τ) = {x|x ∈ S and min
x′∈Ω(x)

σ̂2(x′) > ϵ} ∪ {x|x ∈ S and x solves equation 11 and µ̂(x) < τ}. (12)

Similarly, we define the decided set as W(τ) = {x|x ∈ S and x solves equation 11 and µ̂(x) ≥ τ}. A
demonstration of the two-stage framework is provided in Figure 1.

4 Geometry of the Domain

We would like to provide a more explicit form for Ω(x). In the case of only individual monotonicity, Ω(x)
is easily determined as a high-dimensional box. The presence of pairwise monotonicity allows us to have a
larger search geometry Ω(x). However, Ω(x) is also much more complicated. With this study, we are able to
obtain a better understanding of the geometry and also permit us to implement the algorithm in practice.

In the rest of the paper, we will ignore nonmonotonic features for the sake of simplicity, unless otherwise
stated, since we cannot draw any conclusions from them. The features are divided into individual monotonic,
weak pairwise monotonic, and strong pairwise monotonic parts, as x = (xS ,xU ,xP ). For features with weak
pairwise monotonicity in U , we give two lists u and v with |u| = |v| such that f is weakly pairwise monotonic
with respect to xui

over xvi
for i = 1, . . . , |u|. For strong pairwise monotonicity, we assume that there is a list

p such that f is strongly pairwise monotonic to xpj over xpj+1 for j = 1, . . . , |p| − 1. All monotonic features
follow individual monotonicity. This structure is sufficient for most applications, but more complicated
structures can be considered if necessary. All proofs are left in Appendix A.
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c1The following sections analyze the geometry induced by individual monotonicity, weak pairwise monotonic-
ity, and strong pairwise monotonicity in Section 4.1, 4.2, and 4.3. c2Afterward, we will provide the results
when all monotonicity has been considered in Section 4.4.

4.1 Individual Monotonicity

In the case that x1, . . . , xm only exhibit individual monotonicity, c1the geometry resulting from the individual
monotonicity is a box.
Proposition 4.1. Suppose f is individually monotonic with respect to x1, . . . , xm, then

Ω(x) = {x′|x′ ≤ x} = {(x′
1, . . . , x

′
m)|x′

1 ≤ x1, . . . , x
′
m ≤ xm}.

Figure 2a with x = (3, 1) is provided for demonstration. A reduction operator is defined for detecting data
points that can be determined by individual monotonicity, which will be used later in the manuscript.
Definition 4.2. We denote ψ(x, c) to reduce values of x by c, that is,

ψ(x, c) = x − c. (13)

It is easy to check that if x′ ∈ Ω(x), then ∃c such that x′ = ψ(x, c).
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(a) Individual monotonicity
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(b) Weak pairwise monotonicity
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(c) Strong Pairwise monotonicity.

Figure 2: Geometry for Ω(x), where x = (x1, x2) = (3, 1). With the progression from individual monotonicity
to weak pairwise monotonicity to strong pairwise monotonicity, we are able to obtain a larger geometry. In
the case of weak pairwise monotonicity, the geometry may not be convex.

4.2 Weak Pairwise Monotonicity

Pairwise monotonicity presents a more challenging situation. Firstly, we will identify the maximum boundary
points, followed by determining the interior points. c2By identifying the maximum boundary points, we will
be able to determine whether a point belongs to the desired geometry.

A swap operator is defined in order to detect data points that can be identified by weak pairwise monotonicity.
Definition 4.3. For indices β and γ, we denote Γ(x, β, γ) to swap values of xβ and xγ in x, that is, if
x′ = Γ(x, β, γ), then

x′
i =


xi if i ̸= β and i ̸= γ,

xγ , if i = β,

xβ , if i = γ.

(14)

c1 Text added.
c2 Text added.
c1 we would have a box, as shown below.
c2 Text added.
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With the size of xβ +xγ fixed, we obtain the following proposition c3to identify whether we are able to make
the comparison under weak pairwise monotonicity.
Proposition 4.4. Suppose f is weakly pairwise monotonic with respect to xβ over xγ , then

f(Γ(x, β, γ)) ≤
M
f(x), if xβ > xγ . (15)

As a result, we can identify the maximum boundary points of the domain c1 c2Basically, maximum boundary
points provide us with points at the boundary of the domain with the largest magnitudes. We provide the
definition below.
Definition 4.5. The set of maximum boundary points of Ω is defined as follows:

∂Ω(x) =
{

x′

∣∣∣∣∣
m∑

i=1
x′

i =
m∑

i=1
xi, f(x′) ≤

M
f(x)

}
. (16)

c3As a next step, we would like to determine the maximum boundary points under weak pairwise mono-
tonicity. We consider swapping by weak pairwise monotonicity to determine maximum boundary points. As
a result, we provide the following proposition.
Proposition 4.6. Suppose f is weakly monotonic with respect to xui

over xvi
for i = 1, . . . , |u|, then

∂Ω(x) =
⋃

i:xui
>xvi

∂Ω(x′|x′ = Γ(x, ui, vi)). (17)

In other words, by fixing the size of
∑

i:i∈U xi, we consider all possible swaps. Recursive definitions are used
since swaps can be performed more than once. Clearly, for a new point x′, if

∑m
i=1 x

′
i >

∑m
i=1 xi, we don’t

have enough information to compare it with x. Conversely, we have the following theorem, c4indicates that
all points in the domain are bounded by maximum boundary points.
Theorem 4.7. Suppose f is weakly monotonic with respect to xui

over xvi
for i = 1, . . . , |u|, there exists a

x′ with
∑

i∈U x
′
i <

∑
i∈U xi and f(x′) ≤

M
f(x), then there exists a x̃′ ∈ ∂Ω(x) such that x′ ≤ x̃′.

By Theorem 4.7, we need only consider the “interior" of ∂Ω to determine the domain. It should be noted
that in this case, the interior has a different definition.
Definition 4.8. We say x is an interior point of ∂Ω if x ≤ x′ for some x′ ∈ ∂Ω. Correspondingly, we write
x ≤ ∂Ω if x ≤ x′ for some x′ in ∂Ω.

We use this definition for better demonstration. If |u| = |v| = 1 and xu > xv, we have

Ω(x) = {x′|x′ ≤ x} ∪ {x′|x′ ≤ Γ(x, u, v)}

More generally, we have the following proposition c5to provide a formula for the domain under weak pairwise
monotonicity, as a result of Proposition 4.6 and Theorem 4.7.
Proposition 4.9. Suppose f is weakly monotonic with respect to xui

over xvi
, then

Ω(x) = {x′|x′ ≤ x} ∪
⋃

i:xui
>xvi

Ω(x′|x′ = Γ(x, ui, vi)). (18)

Remark 4.10. The geometry becomes larger in the presence of weak pairwise monotonicity compared to
only individual monotonicity as illustrated in Figure 2b. However, Ω(x) is not necessarily convex. Suppose,
for example, that f is weakly monotonic with respect to x1 over x2, and we have x = (3, 1), then we have

Ω(x) = {(x′
1, x

′
2)|x′

1 ≤ 3, x′
2 ≤ 1} ∪ {(x′

1, x
′
2)|x′

1 ≤ 1, x′
2 ≤ 3}.

As shown in Figure 2b, it is evident that it is not convex, and thus complicate the optimization.
c3 under weak pairwise monotonicity.
c1 , which we define as follows.
c2 Text added.
c3 Text added.
c4 Text added.
c5 Text added.
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4.3 Strong Pairwise Monotonicity

We then consider the strong pairwise monotonicity. Suppose we have a list p such that f is strongly pairwise
monotonic with respect to xpi

over xpi+1 for i = 1, . . . , |p| − 1. As a starting point, we will consider the case
in two dimensions. Assume that f is strongly monotonic with respect to x1 over x2. Based on the strong
pairwise monotonicity of x1 + x2, we can derive the following proposition.
Proposition 4.11. Suppose f is strongly pairwise monotonic with respect to xβ over xγ , if x′

β ≤ xβ , x
′
γ =

xβ + xγ − x′
β, then

f(x′
β , x

′
γ ,x¬) ≤

M
f(xβ , xγ ,x¬). (19)

As a result, it can be shown that

Ω(x) = {(x′
1, x

′
2)|x′

1 ≤ x1, x
′
2 ≤ x1 + x2 − x′

1}.

A simple example of x = (3, 1) is given in Figure 2c with a comparison to individual and weak pairwise mono-
tonicity. Clearly, we would be able to have a larger searching geometry with strong pairwise monotonicity.
c1In general, the following theorem applies to geometry induced by strong pairwise monotonicity.
Theorem 4.12. For f(x1, . . . , xm), where f is strongly pairwise monotonic with respect to xi over xi+1 for
i = 1, . . . ,m− 1, then

Ω(x) =

x′

∣∣∣∣∣∣x′
i ≤

i∑
j=1

xj −
i−1∑
j=1

x′
j ,∀i

 . (20)

As a result of Theorem 4.12, c2we obtain the following proposition, which allows us to calculate the maximum
boundary points.
Proposition 4.13. For f(x1, . . . , xm), where f is strongly pairwise monotonic with respect to xi over xi+1
for i = 1, . . . ,m− 1, denote

φ(x,p) =

x′

∣∣∣∣∣∣x′
i ≤

i∑
j=1

xj −
i−1∑
j=1

x′
j ,∀i,

m∑
i=1

xi =
m∑

i=1
x′

i

 , (21)

then

∂Ω(x) = φ(x,p). (22)

As a result, if there exists a x′ with
∑m

i=1 x
′
i <

∑m
i=1 xi and f(x′) ≤

M
f(x), then there exists a x̃′ ∈ ∂Ω(x)

such that x′ ≤ x̃′.

That is, x′ ∈ Ω(x) if and only if x′ is interior of ∂Ω(x).

4.4 General Cases

In general, suppose all features are individual monotonic, f is weakly monotonic with respect to xui over xvi

for lists u and v in U , and f is strongly monotonic with respect to pj over pj+1 for j = 1, . . . , |p| − 1. We
generalize φ by requiring that x′

¬ = x¬ for features not in p in equation 21. Then we write the geometry
recursively as

Ω(x) = {x′|x′ ≤ x} ∪ {x′|x′ ≤ φ(x,p)} ∪
⋃

i:xui
>xvi

Ω(x′|x′ = Γ(x, ui, vi)). (23)

c1 We consider the following theorem for more general cases.
c2 we have the following proposition.

10
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5 Fast Marching Method

We discuss how to solve c3 equation 11 in this section. The optimization is challenging because of the
nonlinearity of µ̂(x) and σ̂(x), discrete and continuous features, and potential non-convex geometry
(from both x′ ∈ Ω(x) and constraints σ̂2(x′) < ϵ). Therefore, standard optimization algorithms may not be
sufficient and difficulties of such problems are discussed by Burer & Letchford (2012). Chen (2022) neglects
the discrete nature of some features and potential non-convexity. Based on the monotonicity results studied
in Section 4, we would like to pursue a different approach to find a global c4maximizers.

We begin by binning the features, with discussions in Appendix E. After binning, as a convenience, we
assume that xj ∈ Z+ ∪ {0}, j = 1, . . . ,m.

We would like to make use of monotonicity. Specifically, we want to go through the monotonic sequence{
x1 → x2 → . . . ,

where µ̂(xi) ≥
M
µ̂(xi+1). (24)

and we stop when σ̂2(xi) < ϵ. By brute-force calculation, all possible points in the space must be calculated
and sorted, which can be very expensive. Therefore, we intend to carry out this process iteratively.

For each point x, c1we want to check its neighbor points in the domain Ω(x) that have not yet been examined.
Define ei as

(ei)j =
{

1, if j = i,

0, otherwise.

Each time we iterate, we explore ψ(x, ei) for all i, that is, we consider decreasing one unit of the feature.
Due to Theorem 4.7 and Proposition 4.13, we only need to include maximum boundary points by pairwise
monotonicity in the initial set defined recursively as

l(x) = x ∪ φ(x,p) ∪
⋃

i:xui
>xvi

l(x′|x′ = Γ(x, ui, vi)). (25)

In each iteration, we define our search as follows:

ϕ(x) =
⋃

i:xi>0
ψ(x, ei). (26)

As a result, we develop the marching method c2(MM).

Algorithm 1 (Fast) Marching Method ((F)MM)
1: Inputs: x, µ̂(x), σ̂(x), and a set l defined in equation 25
2: Outputs: Return the global solution to equation 11 if exists
3: while σ̂2(x) ≥ ϵ and |l| > 0 do
4: l = l ∪ {x′|x′ ∈ ϕ(x) and x′ has not been visited}
5: Return x as the element corresponds to maximum µ̂(x′) in l and remove it from l (by Heap)
6: end while

The most expensive calculation in the marching algorithm is to determine the maximum value in the set
l. A straightforward calculation costs O(|l|). The heap data structure can accelerate such calculations, as
discussed by (Tsitsiklis, 1995; Sethian, 1996; Helmsen et al., 1996). This algorithm is known as the Fast
Marching Method (FMM), which has been proven to be a highly effective method for tracing interface
evolution by solving partial differential equations. As there are more insertions than extract-max operations,
we use the Fibonacci heap by Fredman & Tarjan (1987), which has a lower insertion cost than the binary
heap. Different from the original FMM, we utilize general monotonicity from domain knowledge.

c3 the optimization problem
c4 solution
c1 we want to explore its nearby
c2 Text added.
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Table 2: Summary results by the FMM using all monotonicity c3and the baseline Ipopt using only individual
monotonicity. In most cases, FMM has improved accuracy.

DATASETS |V|
|S| (%) MEAN-ITER

τ = 0.5 0.4 0.3 0.2 0.1 0

FMM

GMSC 77.4 64.5 43.2 15.7 7.9 1.0 29
COMPAS 97.7 86.9 80.1 74.0 72.5 72.2 4

Law 78.9 58.3 39.0 21.1 14.2 14.2 343
Life-Science 75.0 55.0 30.0 10.0 0.0 0.0 9

Mammography 77.8 76.7 76.4 74.1 71.7 70.7 12

Baseline

GMSC 91.5 84.4 75.0 55.0 32.8 12.1 66
COMPAS 98.9 91.6 87.3 81.7 79.7 79.4 36

Law 80.0 65.3 50.9 42.0 34.0 33.4 50
Life-Science 100.0 90.0 70.0 40.0 30.0 25.0 10

Mammography 78.1 76.7 76.4 76.2 74.6 70.7 20

5.1 Analysis of the Algorithm

The algorithm is now briefly analyzed with the proof left in Appendix A. The following proposition shows
that the algorithm marches monotonically.
Proposition 5.1. MM searches for the solution in a monotonic non-increasing order of µ̂.

To ensure that we do not miss any points during the march, we provide the following proposition.
Proposition 5.2. When MM runs to the end with l = {}, all points in the domain have been explored.

Let us suppose that the iteration stops after N steps. Then the space complexity is O(mN). It is estimated
that the amortized time for inserting is Θ(1) and deleting the maximum key is Θ(log(|l|)). We further
assume that the calculation of µ̂(x) and σ̂(x) is C. As a result, at each iteration, the amortized time is
Θ(Cm+ log(|l|)). The overall cost of FMM is

CostF MM = Θ((Cm+ log(m))N +N log(N)).

As a comparison, the cost of MM is

CostMM = O(CmN +mN2).

As a result, the operation of finding the maximum values will be very expensive for large N .
Remark 5.3. In practice, the most expensive part is CmN , where C depends on the architectures of models.

6 Empirical Example

We provide examples in finance, criminology, education, life science, and healthcare. The results are summa-
rized in Table 2. In all experiments, the monotonic groves of neural additive models (MGNAMs) proposed
by Chen & Ye (2023) are used. c1An overview of MGNAMs is provided in Appendix B. For all examples, we
use ten models (M = 10) for ensembles and threshold ϵ = 10−3. Note models and thresholds are not unique
choices and we provide more discussions in Appendix E. We provide detailed analyses for two datasets and
leave the remaining examples to the Appendix C.

6.1 Finance - Credit Scoring

We use the Kaggle credit score dataset, Give Me Some Credit (GSMC). Without loss of generality, we let
x1 −x3 denote the number of past dues and their duration: 90+ days, 60-89 days, and 30-59 days. By domain

c1 Text added.
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Table 3: The comparison for the optimization 11 by considering different monotonicity for the GMSC dataset
with samples affected by pairwise monotonicity. Pairwise monotonicity improves the result.

INDIVIDUAL WEAK STRONG
τ |U|

|T| (%) MEAN-ITER τ |U|
|T| (%) MEAN-ITER τ |U|

|T| (%) MEAN-ITER

0.5 72.4 15 0.5 71.9 19 0.5 70.0 24
0.4 58.8 16 0.4 57.7 19 0.4 54.6 24
0.3 35.5 16 0.3 33.7 19 0.3 32.3 24
0.2 11.8 18 0.2 9.0 22 0.2 8.8 28
0.1 6.0 19 0.1 4.6 24 0.1 4.6 31
0 3.6 21 0 3.6 27 0 3.6 35

knowledge, the probability of default is strongly monotonic with respect to x1 over x2 over x3. Furthermore,
we impose individual monotonicity for monthly income (x4) and number of dependents (x5).

6.1.1 Stage I - Detect OOD Data

As the first step, we apply the ensemble method to detect OOD data. Running the experiment with the
entire dataset leads to the identification of approximately 2.8% of the data as uncertain samples, which
are therefore categorized in the unconfident set S. A common example would be an applicant with a
high amount of past dues, which is very rare in the dataset. Considering the rarity of this prediction, it
makes sense that our model is unconfident about it. The existence of OOD data seems to be commonplace.
Consequently, we should exercise caution when applying our models to new situations.

6.1.2 Stage II - Finding Lower Bounds

Next, we use the FMM to solve the mean-variance optimization problem 11. Predictions higher than τ
are left in the undecided set V. Our analysis takes into account a variety of choices of τ , which can be
selected by users according to their risk appetites. It is important to emphasize that while τ = 50% is a
natural choice for image classification applications, it is not necessarily the best choice for credit scoring
applications. Credit scoring aims to accurately predict the probability of default, and 50% is already a very
high probability. For accuracy, we calculate |V|

|S| ∈ [0, 1], which is used to determine the ratio of unconfident
samples that cannot be provided with reliable lower bounds. Thus, 0 suggests that confident lower bounds
are provided for all unconfident samples, whereas 1 suggests that no confident lower bounds are provided.

Overall results. Our findings are summarized below, based on Table 2. As a result of considering lower τ ,
we are able to determine more confident predictions, as expected. Based on strong pairwise monotonicity,
only 0.22% of the entire dataset is undecided when τ = 0.1. c1

Comparison using different monotonicity. Further comparisons are made by considering individual,
weak pairwise, and strong pairwise monotonicity. It should be noted that in this example, x1 − x3 exhibits
strong pairwise monotonicity, which implies weak pairwise monotonicity. c2 We focus on samples that are
affected by pairwise monotonicity and denote the set that includes these samples as T. It is important to
note that not all samples are affected by pairwise monotonicity; for example, (x1, x2, x3) = (0, 0, 3). In such a
scenario, the FMM would produce the same result regardless of whether pairwise monotonicity is considered
or not, and therefore it is not of interest to us. Similarly, we denote the undecided set out of T as U. The
results are documented in Table 3. Based on the table, it can be seen that pairwise monotonicity provides
consistent improvements for different values of τ , suggesting that pairwise monotonicity should be used. The
number of iterations is not significantly increased by including pairwise monotonicity, demonstrating the
effectiveness of FMM.

c1 FMM has a mean number of iterations of 29 for each optimization, demonstrating its efficacy. In this regard, our method
has proven to be successful.

c2 The case of individual monotonicity is similar to the work done by Chen (2022), but the FMM accounts for discrete features
and offers global solutions.
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Table 4: A successful example of GMSC.

ITER x1 x2 x3 x4 x5 MEAN VARIANCE

0 3 1 3 1 2 0.6071 0.00165
1 3 0 4 1 2 0.6034 0.00159
2 3 1 2 1 2 0.5989 0.00151
3 3 0 3 1 2 0.5935 0.00142
4 3 1 3 1 1 0.5918 0.00174
5 2 2 3 1 2 0.5881 0.00103
6 3 0 4 1 1 0.5880 0.00168
7 3 1 1 1 2 0.5864 0.00135
8 3 1 2 1 1 0.5834 0.00159
9 2 1 4 1 2 0.5828 0.00103
10 2 2 2 1 2 0.5793 0.00092

A successful example. To better demonstrate how FMM performs, we provide a successful example with

x =
[
3 1 3 1 2 0.96 0.38 9 1 40

]
.

The iterations of FMM are recorded in Table 4. By following a monotonic sequence, variance has been
reduced to meet the threshold. The reason for this result is that a large number of past dues are rare. The
overall number of past dues (x1 +x2 +x3) is greater than 7 in only 232 samples. As the number of past dues
decreases, the model becomes more confident in its prediction. Additionally, strong pairwise monotonicity
is necessary in order to get from (x1, x2, x3) = (3, 1, 3) to (x1, x2, x3) = (2, 2, 2).

An unsuccessful example. Unfortunately, not all cases can result in positive outcomes. In some cases,
it may not be possible to reduce the variance to the desired level. c1In other words, for equation 11, c2we
might have

min
x′∈Ω(x)

σ̂2(x′) ≥ ϵ.

c3The main reason for this is that the uncertainty is primarily derived from nonmonotonic features. More
specifically, suppose we split x into monotonic and nonmonotonic parts as x = (xα,x¬), if x¬ is the main
reason that x is being OOD, then the maximize may not exist in equation 11.

Here is an example,

x =
[
0 0 1 1 2 0.90 1.06 25 10 57

]
. (27)

The iterations of FMM are recorded in Table 5. In spite of the fact that FMM has been run to the end and
the variance has been significantly reduced, c4we are still unable to find the global maximizer for equation 11.
In this example, it appears that x9 is a large value that is substantially different from the mean value of
1. In fact, there are only 113 samples with x9 ≥ 10, which suggests that this feature is quite rare and may
result in a high level of variance.
c9In order to determine which feature has the greatest influence on unconfident predictions, it is possible to
apply the attribution method to the feature importance. By preserving desired axioms, attribution methods
allocate attributions in a fair manner. A popular method that has been very successful is Shapley value
(Shapley et al., 1953; Lundberg & Lee, 2017). c10 We use the baseline Shapley value (BShap) (Sundararajan
& Najmi, 2020) c11to allocate attributions to the difference of σ̂2 between x and a confident baseline point
x′. A detailed description of the BShap can be found in Appendix G.

c1 Text added.
c2 Text added.
c3 Text added.
c4 we are still unable to come up with a satisfactory bound.
c9 Text added.

c10 Text added.
c11 Text added.
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Table 5: An unsuccessful example of GMSC.

ITER x1 x2 x3 x4 x5 MEAN VARIANCE

0 0 0 1 1 2 0.4182 0.00375
1 0 0 1 1 1 0.4028 0.00365
2 0 0 1 1 0 0.3820 0.00328
3 0 0 1 0 2 0.3770 0.00431
4 0 0 1 0 1 0.3622 0.00414
5 0 0 1 0 0 0.3422 0.00363
6 0 0 0 1 2 0.2335 0.00195
7 0 0 0 1 1 0.2223 0.00181
8 0 0 0 1 0 0.2074 0.00154
9 0 0 0 0 2 0.2043 0.00186
10 0 0 0 0 1 0.1941 0.00171
11 0 0 0 0 0 0.1806 0.00142

Figure 3: c7BShap for σ̂2(x) of the unsuccessful example in equation 27. c8For better demonstration, we
normalize the BShap values such that

∑m
i=1 |BSi| = 1. x9 is the dominant cause of high variance.

c12We apply BShap to x in equation 27 c13 with the baseline x′ as the average of all data. The result is shown
in Figure 3. c14Based on our results, it appears that x9 is the main cause of unconfident predictions. However,
x9 is not considered a monotonic feature, we cannot c15reduce variance by changing x9. If additional domain
knowledge is included, it may be possible to c16further reduce variance. For example, local monotonicity
might be imposed instead of global monotonicity (the probability of default increases after N loans). This
result encourages us to incorporate more domain knowledge into the model.

6.2 Criminology - Recidivism

We present another example with a less satisfactory result and analyze the reason and potential remedy. In
criminology, we examine the prediction of recidivism using the Correctional Offender Management Profiling
for Alternative Sanctions (COMPAS) (Pro, 2016). There are four monotonic features. The overall result is
recorded in Table 2 and the comparison of individual and pairwise monotonicity is in Table 6. Although we
can obtain reliable bounds for some data, the performance is not as good as that of the GMSC dataset.

c12 Text added.
c13 Text added.
c14 Text added.
c15 provide further information
c16 provide further information
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Reasons for the less satisfactory result. There is a difficulty encountered when using the FMM to reduce
the variance of OOD data. c1For example, when τ = 0.3, there are only 20% points in the unconfident set
that find their global maximizers. Age appears to be a significant factor, as demonstrated in Appendix C, but
there is no indication that it is a global monotonic feature. The relationship between age and the prediction
variance, however, shows a clear pattern, as in Figure 4. Roughly speaking, model predictions are much
less confident for young people. We expect the performance to improve significantly if we can incorporate
further domain knowledge regarding age, such as local monotonicity for example. Even so, because we are
not experts in the field, we do not impose further limitations on age here to avoid unfair treatment.

Table 6: The comparison of the optimization 11 by considering different monotonicity for the COMPAS
dataset with samples affected by pairwise monotonicity. Pairwise monotonicity improves the result.

INDIVIDUAL STRONG
τ |U|

|T| (%) MEAN-ITER τ |U|
|T| (%) MEAN-ITER

0.5 73.0 4 0.5 67.6 5
0.4 70.3 7 0.4 64.9 9
0.3 70.3 7 0.3 62.3 10
0.2 67.6 8 0.2 62.3 10
0.1 67.6 8 0.1 62.3 11
0 67.6 8 0 62.3 11

6.3 Comparison to the Existing Method

c1The results of the present study are compared with those of Chen (2022). In Chen (2022)’s work, c2only
individual monotonicity is assumed. If S contains the index of all monotonic features such that x = (xS ,x¬),
then equation 11 reduces to 

maxx′∈Ω(x) µ̂(x′),
subject to σ̂2(x′) < ϵ,

Ω(x) = {x′|x′
S ≤ xS}.

c3Now that the geometry has been explicitly specified, we follow Chen (2022) c4 and use the existing non-
linear programming optimization package. In our experiments, the Interior Point Optimizerc4 (Ipopt) (Hart
et al., 2017; 2011) c5is used. More details are provided in Appendix D.
c6 A summary of the results is presented in Table 2. c7 It should be noted that smaller τ would result in
more global maximizers. Moreover, our method is guaranteed to have better accuracy since it determines the
global maximizer and pairwise monotonicity is included, whereas Ipopt only finds the local maximizer with
individual monotonicity. The algorithm with fewer mean iterations is bolded. Overall, we have observed that
our method has improved accuracy greatly, with the exception of the Mammography dataset. In the case
of the Mammography dataset, we find that the model is generally not confident about its prediction (the
percentage of OOD data is greater than 50%). Thus, finding good maxima is difficult. Secondly, iteration
numbers are not necessarily worse than the baseline method, except for the law school dataset. On the law
school dataset, we observe that it is quite difficult for the FMM for some data points to find the global
optimizer and run the algorithm to the end, thus resulting in a high number of iterations.

c1 For example, there are only 20% of which, find the confident lower bound when τ = 0.3.
c1 Text added.
c2 Text added.
c3 Text added.
c4 Text added.
c4https://coin-or.github.io/Ipopt/
c5 Text added.
c6 Text added.
c7 Text added.
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Figure 4: Variance vs Age in the COMPAS dataset.

7 Related Work

7.1 Relationship to Monotonic Models

c8There has been considerable interest in monotonic models in the ML community. In general, existing meth-
ods can be divided into two groups: (1) Monotonicity by constructions (Runje & Shankaranarayana, 2023;
You et al., 2017; Milani Fard et al., 2016; Daniels & Velikova, 2010; Sill, 1997) and (2) Monotonicity by
regularization (Liu et al., 2020; Bakst et al., 2020; Sivaraman et al., 2020; Sill & Abu-Mostafa, 1996). c9Both
methods have been successful and have been applied to a wide range of applications.
c1Despite the many successes in monotonic models, these approaches mainly focus on individual monotonic-
ity, and less attention is paid to pairwise monotonicity. A regularization approach is used by Gupta et al.
(2020) c2to enforce individual and strong pairwise monotonicity for linear models, generalized additive mod-
els, and the nonlinear function class of multi-layer lattice models. For neural additive models, Chen & Ye
(2022) c3enforces individual and weak pairwise monotonicity through regularization. Using a transparent ar-
chitecture of MGNAMs, Chen & Ye (2023) c4enforces individual monotonicity, weak pairwise monotonicity,
and strong pairwise monotonicity by regularization. We use MGNAMs here because they incorporate all the
monotonicity we require.
c5Despite the fact that our methods are based on monotonic models as in equation 11, c6the focus of this
research is not on how monotonic models are trained but rather on how monotonicity can be further utilized
to reduce predictive uncertainty. In this way, our method can be applied to general monotonic models to
reduce their predictive uncertainty.

7.2 Relationship to Out-of-distribution Detection

c7There have been studies of OOD detection methods that have been successful, including maximum softmax
probability (Hendrycks & Gimpel, 2016), c8temperature scaling (Guo et al., 2017), c9Monte-Carlo dropout
(Gal & Ghahramani, 2016; Srivastava et al., 2015), c10ensemble methods (Lakshminarayanan et al., 2017),

c8 Text added.
c9 Text added.
c1 Text added.
c2 Text added.
c3 Text added.
c4 Text added.
c5 Text added.
c6 Text added.
c7 Text added.
c8 Text added.
c9 Text added.

c10 Text added.
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c11stochastic variational Bayesian inference (Blundell et al., 2015; Graves, 2011; Louizos & Welling, 2017),
c12and approximated Bayesian inference based on the last layer (Riquelme et al., 2018). c13A detailed
comparison of these methods can be found in Ovadia et al. (2019); Yang et al. (2022).
c1In traditional OOD tasks, the main focus is on detecting OOD data. As a result, the system could abstain
from making decisions due to low confidence(Ovadia et al., 2019; OCC, 2021). c2We focus on the case of
underlying models that have prior knowledge of monotonicity, and how a confident alternative point can be
derived by assuming monotonicity to provide additional information of unconfident predictions. Therefore,
the choice of OOD methods may not be unique. As part of this work, we examine ensemble methods and use
their variance as a proxy for uncertainty. It is possible to extend this approach by considering other measures
of uncertainty. A simple way to accomplish this is to switch σ̂2(x) < ϵ to other constraints in equation 11.

7.3 Relationship to Fast Marching Methods for Solving the Eikonal Equation

c3Originally, the FMM (Tsitsiklis, 1995; Sethian, 1996; Helmsen et al., 1996) c4 was proposed as a solution
to the Eikonal equation, which is a partial differential equation of the following form:{

|∇u(x)| = 1
f(x) , for x ∈ Ω,

u(x) = 0, for x ∈ ∂Ω,
(28)

c5where | · | is the Euclidean norm, ∇ is the gradient, f is given, Ω is the domain, and ∂Ω is the boundary
of the domain. Such problems describe the evolution of a closed surface as a function of time u with speed
f in the normal direction at a point x on the propagating surface. The speed function f is specified, and
the time u at which the contour crosses a point x is calculated by solving the equation. Alternatively, u(x)
may be thought of as the minimum amount of time needed to reach ∂Ω from x. c6As a result, the original
Eikonal equation 28 c7differs completely from equation 11 c8we are attempting to solve.

Appendix F c9describes the original FMM. Based on the optimal control interpretation of the problem, the
FMM constructs a solution outwards starting from the boundary values. In other words, the FMM calculates
a sequence of monotonically non-decreasing solutions and utilizes the heap algorithm to accelerate the calcu-
lation of finding the minimum value and removing it from the set. Although the original problem of interest
is completely different, we formulate our method in the form of a monotonic sequence as in equation 24.
c10Using the monotonic properties of the model, we propose finding the global maximum of the equation by
iteratively searching the points by equation 26 c11from the set l in Algorithm 1. c12After this, the acceleration
of finding the maximum value and removing it from the set is performed using the FMM, as was the case
with the original technique to solve the Eikonal equation.

8 Limitations and Future Work

In this paper, we demonstrate how to exploit general monotonicity to reduce prediction uncertainty by
providing a general optimization framework and a fast marching method. Overall, pairwise monotonicity
has enhanced the performance and the fast marching method provides a global solution with reasonable

c11 Text added.
c12 Text added.
c13 Text added.

c1 Text added.
c2 Text added.
c3 Text added.
c4 Text added.
c5 Text added.
c6 Text added.
c7 Text added.
c8 Text added.
c9 Text added.

c10 Text added.
c11 Text added.
c12 Text added.
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iterations, making it a suitable benchmark for future research. There are some limitations of our current
approach, as summarized below. Correspondingly, we propose future research.

1. The major limitation of the current FMM is that it does not consider the behavior of prediction vari-
ance, thus it may take a considerable number of iterations, especially for high-dimensional problems.
We plan to utilize properties of model variances to improve the FMM’s search process.

2. In general, FMM performs better when more features exhibit monotonicity, especially important
features. It should be noted, however, that some important features may not exhibit monotonicity,
at least not globally. The performance may be improved by applying other domain knowledge
(Gupta et al., 2020; 2018) and imposing local monotonicity. Such a direction will be explored.
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A MISSING PROOFS

This section contains detailed proofs of the results that are missing in the main paper.

A.1 Proof of Theorem 3.1

Proof. Suppose f̂i is individually monotonic to xα, then

f̂i(xα,x¬) ≤
M
f̂i(x′

α,x¬), if xα ≤ x′
α.

If this is true for all i, then for x′
α ≥ xα, we have

1
M

M∑
i=1

f̂i(xα,x¬) ≤
M

1
M

M∑
i=1

f̂i(x′
α,x¬)

Suppose f̂i is weakly pairwise monotonic with respect to xβ over xγ , then for xβ = xγ , we have

f̂i(xβ , xγ + c,x¬) ≤
M
f̂i(xβ + c, xγ ,x¬),∀c ∈ R+.

If this is true for all i, then we have

1
M

M∑
i=1

f̂i(xβ , xγ + c,x¬) ≤
M

1
M

M∑
i=1

f̂i(xβ + c, xγ ,x¬).

A similar conclusion can be drawn for strong pairwise monotonicity.

A.2 Proof of Proposition 4.1

Proof. If x′ ∈ Ω(x), then f(x′) ≤
M
f(x) by definition. Conversely, if x′

i > xi for some i, we cannot draw any
conclusions.

A.3 Proof of Proposition 4.4

Proof. Without loss of generality, we write x = (xβ , xγ ,x¬). Consider x′ = (xγ , xγ ,x¬) and c = xβ −xγ > 0,
then by definition, we have

f(xγ , xγ + c,x¬) ≤
M
f(xγ + c, xγ ,x¬).
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A.4 Proof of Proposition 4.6

Proof. From Proposition 4.4, we determine the form. Otherwise, if xβ < xγ , we cannot draw conclusions.

A.5 Proof of Theorem 4.7

Proof. Consider the sequence of steps required to make x′ from x,

x1 → x2 → · · · → x′,

with x1 = x. For each step, we can either reduce the value of xi as long as x′
i ≥ 0, or swap xi with xj if

xi > xj . We would like to construct a new sequence by applying reduction operations and swap operations
one by one. In order to accomplish this, we merge all reduction operations between two swap operations. In
the absence of a reduction operation, we simply consider ψ(x,0). As a result, we have

xi+1 =
{
ψ(xi, ci), if i odd,
Γ(xi, ui, vi), if i even.

(29)

Next, we construct another sequence in ∂Ω to bound xi,

x̃1 → x̃2 → · · · → x̃′,

with x̃1 = x and

x̃i+1 =


x̃i, if i odd,
Γ(x̃i, ui, vi) if i even and x̃i

ui > x̃i
vi ,

x̃i, if i even and x̃i
ui < x̃i

vi .

We want to show that x̃i ≥ xi for all i. It is clear that this holds for i = 1, and we consider when i > 1. We
focus on the third case because the first two cases are obvious. If x̃i

ui < x̃i
vi and xi

ui > xi
vi , since xi

ui ≤ xi−1
ui−1

and xi−1
ui−1 ≤ x̃i

ui , then xi
ui < x̃i

vi and xi
vi < x̃i

ui . Thus, after swapping on xi, xi+1 ≤ x̃i+1. By induction, we
conclude.

A.6 Proof of Proposition 4.11

Proof. Let c = xβ − x′
β , then we have

f(x′
β , x

′
γ ,x¬) = f(x′

β , xγ + c,x¬) ≤
M
f(x′

β + c, xγ ,x¬) = f(xβ , xγ ,x¬).

A.7 Proof of Theorem 4.12

Proof. First, we show if x′ ∈ Ω(x), then f(x′) ≤
M
f(x). Denote ci = xi −x′

i, then from Equation equation 20
we have

i∑
j=1

cj ≥ 0, i = 1, . . . ,m.
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By Proposition 4.11 and individual monotonicity, we have

f(x1, . . . , xm) ≥
M
f(x′

1, x2 + c1, . . . , xm)

≥
M
f(x′

1, x
′
2, x3 + c1 + c2, . . . , xm)

≥
M
. . .

≥
M
f

(
x′

1, . . . , x
′
m +

m∑
i=1

ci

)
≥
M
f(x′

1, . . . , x
′
m).

Conversely, suppose x′ /∈ Ω(x), then ∃i such that
∑i

j=1 xj <
∑i

j=1 x
′
j . Let c =

∑i
j=1 xj . Consider the

function

f(x1, . . . , xm) = 1∑i

j=1
xj>c

.

Clearly, f satisfies the individual and strong pairwise monotonicity. However, we have

0 = f(x) ≤
M
f(x′) = 1.

Thus, we conclude.

A.8 Proof of Proposition 5.1

Proof. By individual monotonicity, we know if x′ ∈ ϕ(x), then µ̂(x′) ≤
M
µ̂(x).

A.9 Proof of Proposition 5.2

Proof. If there is x′ ∈ Ω(x) has not been explored, then x′ + ei has not been explored for all i except at
boundaries. By Proposition 4.6, Theorem 4.7 and Proposition 4.11, we know x′ ≤ x̃ for some x̃ ∈ ∂Ω(x)
and all maximum boundary points are included in the initial list. It is possible to reach max boundary points
if we continue adding ei for some i, as a contradiction.

B Monotonic Groves of Neural Additive Models
c1Here, we briefly review the Monotonic Groves of Neural Additive Models (MGNAMs) introduced by Chen
& Ye (2023). c2Assume that the features are divided into individual monotonic, weak pairwise monotonic,
strong pairwise monotonic, and nonmonotonic parts, as x = (xS ,xU ,xP ,x¬), similar to Section 4. c3 For
features with weak pairwise monotonicity in U , we give two lists u and v with |u| = |v| such that f is weakly
pairwise monotonic with respect to xui

over xvi
for i = 1, . . . , |u|. For strong pairwise monotonicity, we as-

sume that there is a list p such that f is strongly pairwise monotonic to xpj
over xpj+1 for j = 1, . . . , |p| − 1.

All monotonic features follow individual monotonicity. GMNAMs use a special architecture of

f(x; Θ) = α+
∑

s:s∈S

f(xs; θs) +
∑

u:u∈U

f(xu; θu) + f(xP ; θP ) +
∑
γ∈¬

f(xγ ,θγ),

c4where each f is parametrized by neural networks, θs,θu,θP ,θγ are parameters for each individual neural
networks, and Θ include all parameters. The architecture is assumed to keep the model transparent, where

c1 Text added.
c2 Text added.
c3 Text added.
c4 Text added.
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f(x,θs), f(x,θu), f(x,θγ) only takes one feature and f(x,θP ) is a function of several features with strong
pairwise monotonicity. This architecture is assumed since if the function is additively separated, then strong
pairwise monotonic features have difficulty exhibiting diminishing marginal effects, which is common in social
science. Following this, the standard regularization methods are applied

min
Θ

ℓ(Θ) + λ1h1(Θ) + λ2h2(Θ) + λ3h3(Θ), (30)

c1where ℓ(Θ) is the mean-squared error for regressions and log-likelihood function for classification, and
h1, h2, h3 are corresponding penalties for individual, weak pairwise, and strong pairwise monotonicity. Let
us assume that all features are already binned with sets Si for each s ∈ S, Ui for each u ∈ U , and P. To
simplify the notation, we assume that all features are binned equally with the distance ∆x. As a result, we
have

h1(Θ) =
∑
s∈S

∑
xi∈Si

max (0, f(xi + ∆x; θs) − f(xi; θs)) ,

h2(Θ) =
∑
u∈U

∑
xi∈Ui

max (0, f(xi + ∆x; θu) − f(xi; θu)) +
|u|∑

j=1

∑
xi∈Ui

max(0, f(xi; θuj
) − f(xi; θvj

)),

h3(Θ) =
∑
p∈P

∑
xi∈P

max(0, f(xi + ep; θP ) − f(xi; θP )) +
|p|−1∑
j=1

∑
xi∈P

max(0, f(xi + epj
; θP ) − f(xi + epj+1 ; θP )),

c2 whereas (ei)j = δi,j , whereas δi,j is the kronecker delta. The model is trained by algorithm 2 .

Algorithm 2 Monotonic Groves of Neural Additive Models (MGNAMs)
1: Initialization: λ1 = λ2 = λ3 = 0, the architecture of the groves of neural additive models (S,U, P,¬)
2: Train a groves of neural additive model by equation 30
3: while min(h1, h2, h3) > 0 do
4: Increase λi if hi > 0
5: Update the groves of neural additive models by equation 30.
6: end while

C DATA and MODELS

c3A summary of the results is presented in Table 7. c4Accuracy of models is evaluated by the AUC. We
find that the AUC is almost the same before and after monotonicity is imposed, which is consistent with the
findings of Chen & Ye (2023); Wang & Gupta (2020); Gupta et al. (2020). c5As a reminder, monotonicity is
primarily intended for the purposes of conceptual soundness and fairness. Further, this paper does not focus
on the accuracy of the model, but rather on the effectiveness of finding global maximums by equation 11.
c6Reporting the results of accuracy is only for the purpose of completeness.

C.1 Finance - Credit Scoring

C.1.1 Data Description

We use the Kaggle credit score dataset c6.
c1 Text added.
c2 Text added.
c3 Text added.
c4 Text added.
c5 Text added.
c6 Text added.
c6https://www.kaggle.com/c/GiveMeSomeCredit/overview
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Table 7: Summary results for all datasets

DATASETS GMSC COMPAS LAW LIFE-SCIENCE MAMMOGRAPHY

AUC (%) 85 72 86 68 90
OOD (%) 2.8 10.4 10.5 14.0 52.2

• x1 −x3: Last two years, the number of times borrower was 90+ days past due, 60-89 days past due,
and 30-59 days past due.

• x4: Monthly income.

• x5: Number of dependents in the family.

• x6: Total balance on credit cards and personal lines of credit except for real estate and no installment
debt such as car loans divided by the sum of credit limits.

• x7: Monthly debt payments, alimony, and living costs divided by monthly gross income.

• x8: Number of open loans and lines of credit

• x9: Number of mortgage and real estate loans

• x10: Age of borrower in years.

• y: Client’s behavior; 1 = Person experienced 90 days past due delinquency or worse.

We impose strong pairwise monotonicity of x1 − x3 and individual monotonicity for x4 − x5.

For simplicity, data with missing variables are removed. Past dues that are greater or equal to 20 are dis-
carded. Then past dues greater than four times are replaced by four due to the rarity. This also applies to
x5 if its value exceeds five. To apply the fast marching method, we categorize x4 into the following inter-
vals: [0, $2500), [$2, 500, $5, 000), [$5, 000, $7, 500), [$7, 500, $10, 000), [$10, 000, $50, 000), and [$50, 000,∞).
Afterward, they are transformed from five to zero so that f increases monotonically with respect to x4. We
make such a choice in order to make features as easy to understand as possible for customers. This is not a
unique choice. The model performance has been monitored to ensure that the accuracy does not deteriorate.
When checking for accuracy, the dataset is randomly partitioned into 70% training and 30% test sets.

C.1.2 Model

For MGNAM, we consider the architecture

f(x) = f1,2,3(x1, x2, x3) + f4(x4) + · · · + f10(x10). (31)

In other words, x1 − x3 are grouped together, and the remaining features are handled using 1-dimensional
functions. For x1 − x3, we enforce strong pairwise monotonicity. We enforce individual monotonicity for
x4 −x5. All functions are approximated by neural networks with one hidden layer of four neurons. We focus
on simple architectures since there is no apparent improvement in accuracy for more complicated models.

C.1.3 Results

The area-under-the-curve (AUC) of the model is around 85%, which indicates that the model is accurate.
It might be possible to improve model performance by further cleaning the data, but since this is not the
primary concern of our study, we opt to omit it for simplicity.
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C.2 Criminology - Recidivism

C.2.1 Data Description

COMPAS is a proprietary score developed to predict recidivism risk, which is used to guide bail, sentencing,
and parole decisions. A report published by ProPublica in 2016 provided recidivism data for defendants
in Broward County, Florida (Pro, 2016). We focus on the simplified cleaned dataset provided in Dressel &
Farid (2018). Three thousand and fifty-one (45%) of the 7,214 observations committed a crime within two
years. This study uses a binary response variable, recidivism, as the response variable. The dataset here
contains nine features selected after some feature selection was conducted.

• x1: Total number of juvenile felony criminal charges

• x2: Total number of juvenile misdemeanor criminal charges

• x3: Age

• x4: Total number of non-juvenile criminal charges

• x5: A numeric value corresponding to the specific criminal charge

• x6: An indicator of the degree of the charge: misdemeanor or felony

• x7: Races include White (Caucasian), Black (African American), Hispanic, Asian, Native American,
and Others

• x8: Sex, male or female

• x9: A numeric value between 1 and 10 corresponds to the recidivism risk score generated by COMPAS
software (a small number corresponds to a low risk, and a larger number corresponds to a high risk)

• y: Whether the defendant recidivated two years after the previous charge

To avoid discrimination, we further exclude races and sexes. The COMPAS score is also excluded as it is
not the focus of this study and is correlated with other features, making its interpretation more difficult. As
there are too few samples, we truncate the number of juveniles exceeding five. Otherwise, if monotonicity is
requested, neural network functions will become flat, which is not helpful.

C.2.2 Model

For MGNAM, we consider the architecture

f(x) = f1,2(x1, x2) + f3(x3) + · · · + f6(x6). (32)

In other words, x1 − x2 are grouped, and the remaining features are handled using 1-dimensional functions.
For x1 −x2, we enforce strong pairwise monotonicity. We further impose individual monotonicity on x4 and
x6.

C.2.3 Result

The AUC of the model is about 72%, which is consistent with the literature (Dressel & Farid, 2018).

We calculate the global feature importance by BShap in Figure 5. c1A brief description of BShap is provided
in Section G. We take the mean value as the baseline value x′. This result indicates that x3, the Age, is an
essential feature.

c1 Text added.
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Figure 5: Global feature importance of COMPAS using BShap.

C.3 Education - Law School Bar Exam

C.3.1 Data description

The law school dataset (Wightman, 1998) concerns information on the probability of passing the bar exam-
ination. In 1991, 163 law schools in the United States were surveyed by the Law School Admission Council
(LSAC). From the total of 18,692 observations, 16,856 (90%) people passed the bar for the first time. If,
for instance, universities wish to award scholarships based on the likelihood of passing the bar examination,
fairness could be important. In this study, the response variable is a binary variable, pass. There are 11
features in this dataset.

• x1: The student’s decile in the school given his grades in Year 3

• x2: The student’s decile in the school given his grades in Year 1

• x3: The student’s LSAT score

• x4: The student’s undergraduate GPA

• x5: Whether the student will work full-time or part-time

• x6: The student’s family income bracket

• x7: Tier, which is an indicator of school quality

• x8: Whether the student is a male or female

• x9: Race

• x10: The student’s first-year law school GPA

• x11: The student’s cumulative law school GPA

• y: Whether the student passed the bar exam on the first try

Race and sex were excluded for potential bias. The law school GPA (LGPA) is calculated on different scales
for the first year and the cumulative. To make a comparison, we scale them. x10 − x11 are excluded as they
are highly correlated with x1 − x2. Additionally, to avoid unfairness, gender and race are also excluded.
Hence, the first 7 features remained to train the model.
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Table 8: The comparison of the optimization 11 by considering different monotonicity for the Law school
dataset with samples affected by pairwise monotonicity. Pairwise monotonicity improves the result.

INDIVIDUAL WEAK
τ |U|

|T| (%) MEAN-ITER τ |U|
|T| (%) MEAN-ITER

0.5 88.0 9 0.5 87.4 13
0.4 88.0 9 0.4 87.4 13
0.3 79.9 268 0.3 73.9 400
0.2 62.2 740 0.2 59.6 1220
0.1 39.5 985 0.1 38.9 1850
0 38.7 991 0 38.2 1862

C.3.2 Model

For MGNAM, we consider the architecture

f(x) = f1(x1) + f2(x2) + · · · + f7(x7). (33)

For all grade-related features (x1 − x4), we require individual monotonicity, as well as weak pairwise mono-
tonicity for x1 over x2. In the latter cases, the requirement indicates the pairwise monotonicity of time: the
more recent information should be regarded as more valuable.

C.3.3 Results

The AUC of the model is about 86%. Regarding the FMM results, approximately 86 percent of OOD
data obtained a confident lower bound. The global BShap value is calculated in Figure 6. There is great
significance to the x1, x2, and x7 features. This model is designed to ensure fairness by not considering x7,
the tier of the law school, as a monotonic feature. However, the tier is an important feature that contributes
to the uncertainty associated with the prediction. Taking the example of Figure 7, high variance data can
be observed in cases where the law school’s tier is high and the student’s LSAT is low. Since most admitted
students to top-tier schools possess high LSAT scores, this is intuitively reasonable. Without the monotonic
information of tier, high-variance data cannot be effectively handled. To mitigate bias, monotonicity on
tier should be avoided. If the feature tier could be replaced with other unbiased yet indicative monotonic
features, such as historical bar exam passing rates of schools, we believe our performance could be further
improved.

A comparison of individual monotonicity and pairwise monotonicity is presented in Table 8. The improve-
ment has been observed.

Figure 6: Global feature importance of LawSchool using BShap.
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Figure 7: Variance vs LSAT in the Law School dataset.

C.4 Life science - Happiness survey

This dataset c0 is about the Somerville happiness survey by Koczkodaj (2018). The results of this study
are used by the City to make decisions regarding the future development of Somerville. OOD datasets are
commonly found in such surveys due to the fact that a large number of participants is unlikely. Moreover,
our framework is well suited for this type of application since most of the features exhibit monotonic behavior
based on domain knowledge. The following features are described.

C.4.1 Data description

• x1: The accessibility of information regarding city services

• x2: The housing cost

• x3: The overall quality of public schools

• x4: People’s confidence in the local police

• x5: Upkeep of streets and sidewalks

• x6: Presence of social community events

• y: Whether a person is happy or not

C.4.2 Model

For MGNAM, we consider the architecture

f(x) = f1(x1) + f2(x2) + · · · + f6(x6). (34)

We impose individual monotonicity on all features.

C.4.3 Results

Our model has an AUC of approximately 68 percent. The prediction of happiness is noisy by nature, so we
consider the result to be satisfactory. The performance of FMM is excellent since all features are monotonic.

c0https://archive.ics.uci.edu/dataset/479/somerville+happiness+survey
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C.5 Medical - Mammographic Mass

C.5.1 Data description

As a screening tool for breast cancer, mammography is widely used in the medical field. However, due to the
uncertainty prediction, biopsies that proved to be benign are not examined as thoroughly as they should be.
There has been some previous research relating to semi-supervised learning to reduce the uncertainty of a
model by Calderon-Ramirez et al. (2021). On the other hand, our approach reduces the uncertainty of OOD
data by finding a lower bound, which is based on the monotonicity property. The data for Mammographic
Mass is collected by Elter (2007), for a 5-feature-based classification. Overall, 961 data are available, including
516 benign and 445 malignant. Below are illustrations of all features.

• x1: BI-RADS assessment, which is a standard assessment used by doctors to describe mammograms.
The values range from 1, the benign, to 5, with a high possibility of malignancy.

• x2: Age

• x3: Shape of Mammography, classified into four types: round, oval, lobular, and irregular

• x4: Margin of Mammography, classified into circumscribed, microlobulated, obscured, ill-defined,
and spiculated

• x5: Mammographic density, classified as high, iso, low and fat-containing

• y: The binary label, malignancy=1, benign=0

C.5.2 Model

For MGNAM, we consider the architecture

f(x) = f1(x1) + f2(x2) + · · · + f5(x5). (35)

According to the doctor’s diagonalization, x1 is monotonic for predicting the severity of breast cancer.
Based on previous research, there is a highly positive relationship between mammographic density and
cancer severity, as discussed in Nazari & Mukherjee (2018), therefore, we impose individual monotonicity on
both x1 and x5.

C.5.3 Results

The AUC of the model is about 90%. The OOD data is more than half due to the rare samples. c1Therefore,
one should be cautious when making predictions based on the model because it is quite uncertain about
its predictions. If there is more data available in the hospital, this could be reduced. Based on FMM, we
obtain lower bounds of confidence of approximately 30%, demonstrating the effectiveness of our approach.
In the case of healthcare datasets, we believe that it is definitely possible to improve the performance by
using more features as well as domain knowledge. Due to the fact that we are not experts in this field, we do
not feel comfortable imposing domain knowledge in more complex situations. This is only a simple example
provided for demonstration purposes.

D Algorithm Details

D.1 Details for MGNAMs

There are two steps in the training process for the model.

Initially, a mini-batch gradient descent approach with a batch size of 64 is applied to pre-train the model
without taking into account monotonicity. The initial learning rate is 1 × 10−2, and it is multiplied by 0.1

c1 Text added.
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when there is no improvement in the loss over 5 epochs, and early stopping is performed when there is no
improvement over 10 epochs.

As part of Step 2, the model is trained to satisfy all monotonicity requirements and the batch gradient descent
method is applied. The α factor, which represents the punishment for features exhibiting monotonicity
violations, is initially set at 1×10−1 and is multiplied by 10 every 10 epochs. At the same time, the learning
rate at is set to 1 × 10−2. Once all monotonies have been satisfied, the remuneration will change to 1 × 10−3

for another 10 epochs of training.

D.2 Details for Ipopt

c1Ipopt (Hart et al., 2017; 2011) c2is a software package for large-scale nonlinear optimization. It can be used
to solve general nonlinear programming problems of the following type

minx∈Rn f(x),
s.t. gL ≤ g(x) ≤ gU ,

xL ≤ x ≤ xU ,

c3where x are the optimization variables, f : Rn → R is the objective function, and g : Rn → Rm are the gen-
eral nonlinear constraints. The functions f and g can be linear or nonlinear and convex or non-convex (but
should be twice continuously differentiable). Ipopt implements the interior point line search filter method to
find a local solution to the nonlinear programming problem.
c4 In the implementation, we maintain all parameters as default settings while changing the maximum num-
ber of iterations to 1000. For greater accuracy, we use a large maximum number of iterations. As the package
ignores the potential discrete nature of features, we round the continuous numbers to integer numbers after
the optimization. In the case of monotonically increasing features, we round them down; otherwise, we round
them up.

E Other Discussions

E.1 Binning

By binning or discretizing, continuous features are transformed into discrete ones. Binning is a common
practice in numerical partial differential equations (Sethian, 1996). For ML, binning may improve predictive
models’ accuracy by reducing noise or nonlinearity in the dataset as well as identifying outliers, and invalid
and missing values of numerical features. The use of bins is particularly popular in high-risk sectors, where
interpretation is of paramount importance. When considering the income feature, for example, people are
more likely to consider low-, median-, and high-income classes rather than specific figures. Various binning
methods are available, including equal width, equal frequency, and weight of evidence. As the choice of
methods depends heavily on the application and the appetite of the user, we will not discuss this further. It
is possible to preserve continuous features by leaving original features alone and binning only the features in
the optimization process.

E.2 Choice of Models

We apply accurate and transparent monotonic groves of the neural additive model (MGNAM) proposed in
Chen & Ye (2023), as three types of monotonicity are included. The code is modified based on the Neural
Additive Models (Agarwal et al., 2021). In general, the choice is not unique. Models developed by Liu et al.
(2020); Milani Fard et al. (2016); You et al. (2017); Runje & Shankaranarayana (2023) are applicable for
individual monotonicity, whereas deep lattice models (Gupta et al., 2020; Cotter et al., 2019) include strong
pairwise monotonicity.

c1 Text added.
c2 Text added.
c3 Text added.
c4 Text added.
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Table 9: c5OOD results for different ϵ

DATASETS GMSC COMPAS LAW LIFE-SCIENCE MAMMOGRAPHY

OOD (%), ϵ = 10−2 8 × 10−3 0 0 0 6.5
OOD (%), ϵ = 10−3 2.8 10.4 10.5 14.0 52.2
OOD (%), ϵ = 10−4 17.8 95.8 41.8 100 90.0

Table 10: c7Additional results by the FMM using all monotonicity

DATASETS ϵ |V|
|S| (%) MEAN-ITER

τ = 0.5 0.4 0.3 0.2 0.1 0

GMSC 10−4 100.0 99.8 99.8 99.5 83.3 7.2 63
MAMMOGRAPHY 10−2 94.4 81.5 77.8 72.2 63.0 63.0 9

E.3 Choice of the Ensemble size M and Threshold ϵ

c5Through extensive empirical studies on a variety of datasets, Ovadia et al. (2019) c6suggests an ensemble
size of M = 5 or 10. To ensure more robust results, we use M = 10.

ϵ thresholds are not unique and depend on applications and user preferences. In high-risk sectors, one may
choose a very small value for ϵ. However, if the risks are tolerable, a larger ϵ may be chosen. The finance
sector, for instance, has seen different types of investors, including risk-averse, risk-neutral, and risk-seeking
investors. There is a discussion in Section 3.6 by Petters & Dong (2016).
c1In this paper, we focus on the choice ϵ = 10−3 such that it works better for all models. We have also tried
different values of ϵ. The results for the number of OOD data are recorded in Table 9. c2When ϵ is very small,
given the size of the dataset, the model could be uncertain about a large portion of the dataset, thus making
the whole model uncertain. If ϵ is too large, models are already very confident about almost all predictions.
The OOD data may not need to be further processed in such extreme cases. As a result, we mainly report
the case when ϵ = 10−3. c3We present some useful cases for other ϵ. The result of GSMC is provided when
ϵ = 10−4 since other models are too uncertain. In addition, we provide the results of Mammography when
ϵ = 10−2 since other models are very confident. The results are presented in Table 10.

F Fast Marching Methods for the Eikonal Equation

c8Originally, the FMM (Tsitsiklis, 1995; Sethian, 1996; Helmsen et al., 1996) c9was proposed to solve the
Eikonal equation as follows:

|∇u(x)| = 1
f(x) , for x ∈ Ω,

u(x) = 0, for x ∈ ∂Ω,

c10where | · | is the Euclidean norm, ∇ is the gradient, f is given, Ω is the domain, and ∂Ω is the boundary
of the domain.

c5 Text added.
c6 Text added.
c1 Text added.
c2 Text added.
c3 Text added.
c8 Text added.
c9 Text added.

c10 Text added.
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c11The following example illustrates how FMM was used in a two-dimensional setting. Assume that the
domain has been discretized into a mesh. Meshpoints will be referred to as nodes. Every node (xi, yj) has a
corresponding value Ui,j = U(xi, yj) ≈ u(xi, yj). There are three sets in the algorithm, which are the far set,
the considered set, and the accepted set. The far set includes the points that have yet to be calculated, the
considered set includes the points that have already been calculated, but do not have the satisfactory solu-
tion, and the accepted set contains the points that have the desired solution. Briefly, the algorithm consists
of the following steps:

1. c1In the initialization, assign every node (xi, yj) the value of Ui,j = +∞ and label them as far; for
all nodes (xi, yj) ∈ ∂Ω, set Ui,j = 0 and label (xi, yj) as accepted.

2. c2For every far node (xi, yj), calculate the new value for Ũ using Eikonal’s update formula. If
Ũ < Ui,j , then set Ui,j = Ũ and label (xi, yj) as considered. To be more specific, for the first-order
approximation, we have

max
(
D−x

i,j U,−D
+x
i,j U, 0

)2 + max
(
D−y

i,j U,−D
+y
i,j U, 0

)2 = 1
f2

i,j

,

c3where

D±x
i,j U = Ui±1,j − Ui,j

±∆x ,

D±y
i,j U = Ui,j±1 − Ui,j

±∆y .

c4Let

UX = min (Ui−1,j , Ui+1,j) ,
UY = min (Ui,j−1, Ui,j+1) .

c5For sufficient small step size ∆x,∆y such that
∣∣∣UX

∆x − UY

∆y

∣∣∣ ≤ 1
fi,j

, we have the solution to the
following quadratic equation (

Ui,j − UX

∆x

)2
+
(
Ui,j − UY

∆y

)2
= 1
f2

i,j

.

c6 It can be written as aU2
i,j + bUi,j + c. The following solution is used due to the physical charac-

teristics of the problem

Ũ = −b+
√
b2 − 4ac

2a .

3. c7Let (x̃i, ỹj) be the node with the smallest value U in the considered set. Label (x̃i, ỹj) as accepted
and remove it from the considered set. The FMM is utilized here. FMM determines the
smallest value by using the heap sort.

4. c8 For each neighbor (xi, yj) of (x̃i, ỹj) that is not accepted, calculate a tentative value Ũ .
c11 Text added.

c1 Text added.
c2 Text added.
c3 Text added.
c4 Text added.
c5 Text added.
c6 Text added.
c7 Text added.
c8 Text added.
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5. c9If Ũ < Ui,j , then set Ui,j = Ũ . If (xi, yj) was previously labeled as far, update the label to be
considered.

6. c10Return to Step 3 if there is a considered node. If not, terminate the process.

c1 In summary, as a result of Eikonal’s update formula, the FMM selects the smallest value in each step,
resulting in a monotonically nondecreasing sequence as the solution, which is similar to equation 24. c2The
heap algorithm is used to increase the speed of determining the smallest value and removing it from the set.

G Shapley Value

c3Following Lundstrom et al. (2022), c4we call the point of interest x to explain as an explicand and x′

a baseline. c5The Shapley value (Shapley et al. (1953)) c6takes as input a set function v : 2N → R, which
produces attributions si for each player i ∈ N that add up to v(N).
Definition G.1 (Shapley value). The Shapley value of a player i is given by:

si =
∑

S⊆N\i

|S|!(|N | − |S| − 1)!
|N |! (v(S ∪ i) − v(S)).

c7We focus on the Baseline Shapley (BShap) Sundararajan & Najmi (2020), in which

v(S) = f(xS ; x′
N\S).

c8That is, baseline values replace the feature’s absence. We denote BShap attribution by BSi(x,x′, f) and
BSi sometimes. For example, suppose f(x1, x2) = x1 + x2, x = (x1, x2), x′ = (0, 0), and S = {1}, then we
have v(S) = f(x1, 0). One common choice of x′ is to take the average of all samples. For the global feature
importance of the ith feature, we take the average of the absolute values of BShap

Ai = 1
n

n∑
j=1

|BSi(xj ,x′, f)|.

c9 Text added.
c10 Text added.
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